17 research outputs found

    Technique and human perception of intermittent air velocity variation

    No full text
    Objectives. The main objective of the present thesis was to evolve a controlled intermittent velocity field and to examine the impact of this type of dynamic indoor climate on human’s psychology and physiology. The prediction was that intermittent velocity variation could provide occupants with the desired cooling without causing draught and that this intermittent change of the indoor climate would influence peoples’ affect and cognitive performance. Methods. All experiments were performed in a classroom-like environment where groups of subjects were exposed to a temperature increase and step changes in air velocity. The changes or intermittent variations in air velocity consisted of elevated speed during five minutes, which were repeated three times. To reduce the influence of individual thermal preferences all measures were collected twice and the statistical analyses were based on the change scores in these measures. Results. The obtained results showed that, intermittent velocity variation may provide occupants with the desired cooling without causing draught. Subjects exposed to velocity variations were significantly less affected by the temperature rise in the room, compared to the control group. Moreover, the method reduced the expected increase of occupants who perceived the temperature condition as uncomfortable. The findings concerning air movements demonstrate that very few perceived the condition as draughty, after being exposed to the three high velocity pulses. The results concerning affect showed a significant effect on high activation, in the temperature range 21 - 24oC when the velocity variations made the subjects rate the temperature as slightly lowered over time, they kept their level of activation. In the higher temperature interval, 25 - 27oC, unactivated unpleasantness increased and activated pleasantness decreased significantly more in subjects in the constant velocity condition than it did for subjects in the velocity variation condition. In sum, all results concerning affect, the significant ones and tendencies point in the same direction. Subjects exposed to velocity variation report changes, over time, indicating higher activation and more positive feelings. No differences in cognitive performances were shown between the air velocity conditions. However, a tendency to a significant result (p = 0.10) in an attention task was shown, indicating that subjects in the velocity variation condition increased their speed in a short-term memory search, compared to subjects in the constant velocity condition. In the temperature range 21- 24oC, where the perception of the room temperature was measured at 0, 5 and 10 minutes respectively after the last high velocity period, the difference in MTV scores between the two groups, did decrease over time. Ten minutes after the last pulse the difference in MTV scores between the two groups was not significant. This suggests that the high velocity period should be repeated every10 to 15 minutes to keep the expected rise in subjects who judged the thermal conditions as uncomfortable down. The skin temperature was not affected neither by the rise in ambient temperature (from 21 to 24oC over 80 minutes) nor the periods (3 x 5 minutes) of high velocity. A consequence of this result is that the human temperature regulation system permitted an increased heat loss during the high velocity pulse, and hence a reduction of the body’s internal stored heat. For uncovered body parts the increase in heat loss was 20 % during the high velocity pulse. Summarised over the whole exposure time the three pulses produced a total energy loss that was only 2 % higher compared to constant low velocity.QC 2011122

    Measurement of Entrainment into an Axisymmetric Jet using Temperature as a Tracer : A Pilot Study

    No full text
    The current extended abstract is a pilot study of an ongoing experimental and theoretical investigation of ambient entrainment of room air into an axisymmetric free jet using temperature as a tracer. The project aims to investigate, by revisiting the concepts and fundamentals of axisymmetric free Jets and entrainment in ventilation applications, particularly focusing on how to optimize performance of low mixing air distribution systems and to test methods of measuring entrainment in such systems. The study aims to explore a scalar field method using temperature as a tracer to estimate entrainment in axisymmetric free Jets. The results obtained show jet characteristics that slightly differ from what is reported in velocity field measurements and other scalar field studies. Thus, a call is made herein for further investigations to understand entrainment and appropriate methods to determine jet characteristics and its mixing effect. Additionally, more studies are needed to verify whether earlier results are representative of entrainment conditions for low mixing ventilation systems whose operation mode depend on near-filed characteristics of jets.Digital, password-protected proceedings</p

    Is Building Ventilation a Process of Diluting Contaminants or Delivering Clean Air?

    No full text
    The purpose of the paper is to discuss the performance of air distribution systems intended for dilution of contaminants and those intended for delivery of clean air to local regions within rooms. At first the systems are distinguished by their visiting frequency behaviour. The performance of the systems with respect to their possibility to influence the concentration due to contaminants is dealt with by the concept dilution capacity for mixing systems and by introduction of the concept delivery capacity for systems intended for delivery of clean air locally. Various ways of realizing systems for supply of clean air to regions within a room are presented and their pros and cons are discussed.  The most important single parameter is the entrainment of ambient air into the primary flow that drives the airflow in the room.   Digital, password-protected proceedings</p

    Is building ventilation a process of diluting contaminants or delivering clean air?

    No full text
    The purpose of this paper is to discuss the performance of air distribution systems intended for dilution of contaminants (e.g. mixing ventilation) and those intended for delivery of clean air to local regions within rooms (e.g. personalized ventilation). We first start by distinguishing the systems by their visiting frequency behaviour. Then, the performance of the systems with respect to their possibility to influence contaminant concentration in the room or regions within the room is dealt with. Dilution capacity concept for mixing systems is discussed, and delivery capacity concept for systems intended to deliver clean air locally is introduced. Various ways for supply of clean air to regions within the room are presented and their pros and cons are discussed. In delivery capacity systems, the most important single parameter is the entrainment of ambient air into the primary supply flow. Therefore, methods of determining entrainment in these systems need to be defined and the results should be included when describing the performance of the air terminal devices

    The drag force distribution within regular arrays of cubes and its relation to cross ventilation – Theoretical and experimental analyses

    No full text
    A novel set of wind tunnel measurements of the drag force and its spatial distribution along aligned arrays of cubes of height H and planar area index \u3bb p (air gap between cubes) equal to 0.028 (5H) to 0.69 (0.2H) is presented and analysed. Two different types of measurements are compared: one type where the drag force is obtained using the standard load cell method, another type where the drag force is estimated by measuring the pressure difference between windward and the leeward fa\ue7ades. Results show that the drag force is nearly uniformly distributed for lower \u3bb p (0.028 and 0.0625), it decreases up to 50% at the second row for \u3bb p = 0.11, and it sharply decreases for larger \u3bb p (from 0.25 to 0.69) where the force mostly acts on the first row. It follows that for the lowest \u3bb p the drag force typically formulated as a drag area corresponds to the total frontal area of the array, whereas for large \u3bb p the drag area corresponds to the area of the first row. By assessing the driving pressure for ventilation from the drag force, the analysis is extended to estimate the cross ventilation as an example of application of this type of measurements

    Energy simulation and analysis of an intermittent ventilation system under two climates

    No full text
    Energy use on heating, ventilation and air conditioning (HVAC) accounts for about 50% of total energy use in buildings.  Energy efficient HVAC systems that do not compromise the indoor environmental quality and at the same time meet the energy reduction directives/policies are necessary and needed. The study herein, evaluates the energy saving potential of a newly proposed ventilation system in spaces with high occupancy density, called Intermittent Air Jet Strategy (IAJS). The aim of the study was to evaluate through simulations the potential energy savings due to IAJS as compared to a mixing ventilation (MV) system in a classroom located in a ‘hot and humid’ climate (Singapore), and in a ‘hot and dry’ climate (Kuwait). The analysis is based on IDA Indoor Climate Energy simulation software. The results herein demonstrate significant reduction of cooling energy use of up 54.5% for Singapore and up to 32.2% for Kuwait with IAJS as compared to MV. Additionally, supply fan energy savings can also be realized if well implemented
    corecore